An April SolarQuest — Photobomb Included

The Sun, as it appeared on April 17, 2025, in hydrogen-alpha light. The image was recorded using a Coronado solar telescope, a Sky-Watcher SolarQuest mount, and a ZWO ASI 678MM camera. Photo by James Guilford.

Taking advantage of midday clear skies, Thursday, we set up the hydrogen-alpha telescope and did a little observing and imaging. Seeing conditions were only good but we could make out several prominences along Sun’s limb. (The proms did not record well and we need to figure out how to enhance their visibility in our images.) Most notable, however, was the shear number of filaments in Sun’s northern hemisphere. None visible in the south! Fragments of exploding filaments launched from Sun and produced two CMEs that, when they reached Earth on April 16, caused strong geomagnetic storm activity and widespread auroras. The storm, however, died out before northern lights could be seen here.

The Sky-Watcher SolarQuest mount is shown here aiming our Coronado 60mm hydrogen-alpha solar telescope at Sun.

Aiding in our efforts was a device we used for the very first time in this session: The Sky-Watcher SolarQuest with its HelioFind system. The device is lightweight, easily supported our rather robust Coronado solar telescope, and was exceptionally easy to learn and operate. Essentially, all that was needed was to set the tripod up so that it was level, turn the device on, and let it do its thing! It is powered by four AA batteries, placed inside the unit. As an alt-az mount, no counterweights or muliti-axis balancing was needed; just mount the scope with its balance point at the center of the dovetail clamp. No remote control, no app, the compact and self-contained SolarQuest established GPS contact, leveled the scope, then looked for Sun. The SolarQuest turned and elevated the telescope, quickly acquiring our nearest star. When the motion stopped, we looked through the eyepiece to discover Sun well within the field of view. A few nudges of the system’s adjustment buttons and Sun was centered. Tracking was excellent throughout the observing/imaging session. Provision is made for further refinement of tracking but that adjustment was unnecessary for the day’s activity. The SolarQuest will make our daytime astronomy a whole lot more convenient and enjoyable!

A business-class jet airplane trailing twin contrails is seen in silhouette against the roiling surface of the sun. The image is recorded in hydrogen-alpha light. Photo by James Guilford.

We had just finished setting up for some solar astronomy and tapped the button to begin a video sequence when something flashed across the computer screen. A jet appeared for less than a second, contrails briefly persisting, silhouetted against the roiling solar disk! We’ve only seen this twice while observing Sun, this being the second time, and we only captured this image by shear luck. The first time we witnessed a solar “photo-bombing” was under similar circumstances. Previously, we had completed setup, was refining focus, and just about to begin recording exposures. We missed imaging that encounter by about the same interval as we succeeded this time!

Watching the best of the lunar eclipse

The total lunar eclipse of March 13 – 14, 2025 did not disappoint! We resolved to capture images from the late partial eclipse to maximum eclipse, mostly to be able to fit in a little sleep! Catching it all, which we could from our North America location, would have required, essentially, an all-night session. Just a bit too much!

Early partial eclipse. The brighter shadow within the penumbra lights the top portion of this image. Note a bit of reddish tone within the dark umbra. 2:08 AM EDT

I sat on a pad over the paved surface where in the cold, where the observatory is to eventually stand. The old telescope mount ticking away as it tracked the moon across the sky. Occasionally geese and ducks on the nearby pond called out against some unseen disturbance. The stars of Great Orion were sinking behind nearby trees.

Moon is deep within the umbra and last penumbra light about to be left behind. 2:19 AM EDT

In the otherwise quiet chill, I watched the lunar transition, from a bright sliver left over from the night’s Full Moon, to glowing copper orb. With a cable release I manually triggered the camera’s shutter: click — pause — click, to record the event.

Maximum eclipse. Moon is fully within the umbra but because it is not traveling through the center of Earth’s deepest shadow, scattered light from the penumbra brightens the upper limb. 2:58 AM EDT

Shortly after maximum eclipse (shown above), at 2:58 AM EDT, I shut down the telescope and, casting a wistful eye at the still-darkened Moon, went indoors. 

I fed the waiting cat, changed back to pajamas, and returned to bed. In fitful sleep, somehow still cold, happy to have sacrificed rest for the experienced phenomenon.

Tech: Askar 103 ED telescope, Canon EOS 5D Mk 4 camera, Meade Goto Mount, Photoshop. ISO 400, variable exposure times.

A total lunar eclipse, not in “prime time”

The coppery totality of the November 8, 2022 total lunar eclipse. The disk is darkest around the lower left, and lightest in the upper right-hand areas. Photo by James Guilford.
The total lunar eclipse of November 8, 2022, as viewed from Medina County. Photo by James Guilford.

In the wee hours of Friday, March 14, the Full Moon will pass through Earth’s shadow in space resulting in the coppery-red colors of a total lunar eclipse. While skies are expected to be clear for the event and temperatures tolerable, the show won’t be in “prime time” — maximum eclipse and color will be on display at about 2:58 AM (EDT) Friday. This will be the only total lunar eclipse of 2025.

While the timing of this year’s eclipse may be brutal, it also means the entirety of the process will be visible. By 12:55 AM (an hour after midnight, to be clear) Moon will have a strangely soft, faded appearance, then lit by the diffuse light of Earth’s outer shadow or penumbra.

The partial eclipse begins at 1:09 AM and by 1:47 AM, half of the lunar disk will be dark, hidden in Earth’s deep inner shadow called the umbra. Darkness will progress across Moon and as the last light fades from the lunar surface, color will begin to appear with the onset of totality.

A total lunar eclipse occurs when Moon passes through the central portion of Earth’s shadow, known as the umbra, where all direct light from Sun is blocked and Moon is illuminated only by scattered light passing through Earth’s atmosphere.

At 2:26 AM, with Moon totally inside the umbra, the spooky beauty will be on full display. Earth’s inner shadow is full of colored light — sunlight scattered through the planet’s atmosphere bearing the scattered colors of the globe’s sunrises and sunsets — the source of a total lunar eclipse’s hues.

Maximum eclipse is reached at 2:58 – 2:59 AM and Moon will be as dark and colorful as it can be during the process. The eclipse sequence begins to reverse after the maximum as Moon continues its passage through Earth’s shadow. Observers will note the darker and lighter portions of Moon’s face subtly rotating as the event unfolds because Moon is not passing directly through the center of the umbra — the upper portion of the disk will be near the edge of the shadow area, the lower portion closest to the center and darkest region.

The timing and appearance of the March 14, 2025 total lunar eclipse is illustrated here. Note the penumbra and umbra shadow areas and the rotating shadow distribution on the lunar surface. Movement is right to left. Illustration Credit: NASA Scientific Visualization Studio

By 6:00 AM Moon will have returned to its Full illumination as if nothing had happened. Those who potentially lost sleep watching, however, will perhaps yawn but be will gratified to have seen one of the most impressive and beautiful astronomical events available to us.

An encounter with the occult(ation)

Only a few minutes from occultation, Mars is seen just off the lower edge of the lunar limb in this full-disk image recorded at 9:09 PM EST. The event only occurs with planet Mars about once every 14 years. Photo by James Guilford.

Clouds held off — pretty much — for us to observe the Moon occult* Mars, the reddish dot in the photo above. About once every 14 years or so, everything lines up just right and planet Mars is hidden by Earth’s Moon. Though Mars is about twice as big in diameter as our Moon, it was nearly 60 million miles farther away from Earth during the encounter — to the unaided eye, Mars looked like a tiny bright red star next to the Full Moon.

As predicted by mathematics, Mars and Moon grew nearer and nearer each other until, at 9:12 PM Eastern Standard Time (EST), the Red Planet disappeared behind our brilliant orb.

Mars, the small reddish dot in this image, nearing occultation by Earth’s Moon, as seen at 9:07 PM EST, January 13, 2025. Photo by James Guilford.
A red arrow indicates a ghostly mound that was Mars as it disappears behind Earth’s Moon at 9:12 PM EST, January 13, 2025. The dark oval to the right of Mars’s vanishing point is the lunar basin Grimaldi. Photo by James Guilford.

Passing clouds threatened to obscure the event but thanks to gaps between those clouds, there was enough clearing for observation. Shortly after Mars vanished, so did those inter-cloud gaps. With Moon now cloud-covered, we did not return to the 13℉ night to watch for Mars to emerge.

Technical: Canon 6D Mk. 2 Camera, Canon 400mm EF 1:5.6 L Lens, Canon 2X telextender, ISO 400, f/11, 1/250 second, photographic tripod.

*Occult: To cut off from view by interposing something. Commonly used as a noun to indicate something supernatural that is hidden from ordinary access.

Two Moons, One Day

Waxing Gibbous Moon, January 10, 2025, at 7:18 PM EST. Note the delicate “C” shape on the upper left-hand edge of the lunar image — rising sun lighting the mountain tops that line Sinus Iridium while lower terrain remains in darkness. Crater Copernicus stands out at center-left, and Crater Tycho stands proudly in the heavily-bombarded lower area of the image. Note the extensive spread of ejecta rays that radiate across Moon’s surface from the relatively recent formation of Tycho. Photo by James Guilford.

It was a clear night so, of course, I had to go outside and take a look. Cold too, at 13℉, so I didn’t stay long! Mars, Jupiter, and Saturn were easy to find, all three shining bright. I was out for a “Moon shot”, though, got a pretty good one. This was made using our Sun shot setup, minus solar filter, of course! Moon was beginning its occultation of the Pleiades which didn’t image well.

The day was clear, as well, and Moon was clear and bright even against the blue daytime sky. So, here is our neighboring world rising through the trees. This is presented second, instead of at the top, because we prefer the nighttime image.

Waxing Gibbous Moon. January 9, 2025, at 4:08 PM EST. Photo by James Guilford.

Our best Sun images yet

The complete solar disk as recorded in hydrogen-alpha light. The “worm-shaped” shadows seen in several areas are filaments. The dark spots are, yes, sunspots. And around the rim or limb of the solar disk are seen prominences — geysers of solar plasma riding magnetic field lines before crashing back into the sun. False color applied.

In addition to photographing Earth’s Sun in white light nearly every clear day, we occasionally set up the heavy telescope mount and bring out the new hydrogen-alpha (Ha) telescope for a bit of visual observing and unique imaging. It’s a bit of work since, without an observatory building we usually feel we need to take down and store away the mount after each session, so we don’t do that every day.

On November 8 we had clear skies, good atmospheric conditions, and the inclination to do the Ha setup and were rewarded with splendid views plus our best Sun images yet.

Using a Barlow lens to zoom for a closer view, we see large and small prominences and hints of spicules along Sun’s limb, and several large filaments. The dark spots in the upper left-hand corner of this picture is a group of sunspots at active region 3889.

Across the solar disk were visible large and distinct filaments — prominence loops seen from “above” — as well as sunspots and swirling patterns in the solar atmosphere around them. All around the Sun’s limb could be seen prominences glowing against a background of black space. Some of the prominences, which are fountain-like sprays and loops of magnetically-charged plasma, were quite large.

A major part of producing good images is what happens away from the telescope. Our usual practice is to record video of the telescope view and use software, in the office, to sort through thousands of video image frames, then stack the best few hundred to form a single still image. The still image is then edited to bring out as much detail and tonal range as possible. This process, which is common in astrophotography, produces a sharper image than what might be acquired via any single photographic “snapshot” owing largely to atmospheric turbulence.

Using a Barlow lens to zoom for a closer view, we see large and small prominences and spicules along Sun’s limb. The dark spot just above the center of this picture is a large sunspot at active region 3879.

There’s room for improvement, and we’re seeing excellent progress, but the images shown here are our best yet of Sun in hydrogen-alpha light.

Note: H-a light is that which Sun is producing in its chromosphere — the solar atmospheric layer between the outer corona and the lower photosphere — and is invisible even to protected human vision and white light cameras. Specialized optics are required to block other wavelengths found in white light and allow observation of Ha. When we observe or image in white light, we’re actually viewing features such as sunspots while looking through both the corona and the chromosphere!

Safety Note: It is not safe to look directly at the sun without specialized eye protection for solar viewing, and safe solar filters for telescope, binocular, or camera use. Permanent damage to vision can result from improper viewing of the sun.

The complete solar disk as recorded in hydrogen-alpha light. The “worm-shaped” shadows seen in several areas are filaments. The dark spots are, yes, sunspots. And around the rim or limb of the solar disk are seen prominences — geysers of solar plasma riding magnetic field lines before crashing back into the sun. Image was recorded and presented here in monochrome.

A comet added to our “life list”

C/2023 A3 (Tsuchinshan-ATLAS) seen against a starry night sky on the night of October 17, 2024.

C/2023 A3 (Tsuchinshan-ATLAS) has faded so very much in just a few days! We wish that we could have seen it early in the week — right after it became an evening object here — but rain and clouds ruined the first nights and, as I just said, that comet is fading *fast* as it retreats toward the outer regions of our Solar System. Comet C/2023 A3 had what seemed to be an extraordinarily long tail and, while we were unable to capture its extent, you can see hints of it leading far beyond its bright nucleus. Visual sightings, for us, were binocular-assisted only and when we could finally see it, C/2023 A3 wasn’t exactly “spectacular”but it was another comet to add to our “life list”.

C/2023 A3 (Tsuchinshan-ATLAS) the night of October 18, 2024, seen above moonlit, autumn-colored trees reflected in still lake waters. Photo by James Guilford.
C/2023 A3 (Tsuchinshan-ATLAS) the night of October 18, 2024. Photo by James Guilford.

A grand aurora

A panoramic view of the aurora borealis as viewed from rural Medina County, Ohio, as a surge in activity occurred. The display is reflected in the still waters of a small lake. The bright light at the right-hand end above the treeline is light pollution from the city of Medina. Photo by James Guilford.

It began on Tuesday, October 8, when a sunspot called AR3848 flared explosively over the course of several hours. The detonation hurled a large and powerful coronal mass ejection (CME) Earthward from Sun. On Thursday, October 10 the magnetically-charged solar plasma hit Earth’s geomagnetic field and fireworks erupted. According to SpaceWeather.com the aurora borealis was seen as far south as Puerto Rico!

The area in the upper left-hand portion of this photograph is AR3848, the “active region” that produced an enormous solar flare on October 8, 2024. This is a view of Sun in hydrogen-alpha light, which shows the solar coronosphere layer. Photo by James Guilford.

I headed out to a remote county park location, where I have permission to be after dark, and was fortunate enough to be ready when a significant surge in activity occurred — around 10 PM EDT. That peak was amazing with colors, shapes, and movement visible across the entire northern horizon. It was particularly cool to see pillars appearing and disappearing in real time. Light from the aurora reflected upon the still waters of the park’s lake. Adding to the quiet, magical mood, were occasional calls in the darkness from perched birds. A wood duck, out on the lake, piped a sound reminding me of common loons.

During peak activity, looking east, we see intense red crowning a curved green ring, the Northern Lights reflected from the surface of still lake water. Photo by James Guilford.

The auroral surge went on for probably a bit more than half an hour, challenging me to select a spot to photograph. First one area would glow, then one at the other end of the bow-shaped display, pillars of light would appear like searchlights, then fade away. A thrill to witness as light, movement, and delicate colors were visible to the unaided eye. The camera picked up more than my poor eyes could see but I say without reservation this was the grandest aurora I’ve witnessed.

The western end of the coronal arc appeared strongest, as viewed from Medina County, through most of the evening. Here, during the surge, we see typical auroral colors, curtain-like waves of shape, and pillars that look like they reach the ground or might be mistaken for searchlights projecting from the ground. Photo by James Guilford.

All evening there seemed to be more intense activity over the western end of the aurora; that was verified by relatives in northwest Ohio whose photos showed a sky full of color directly overhead.

Although some observers were concerned that moonlight might drown out the aurora, that was not a problem during the peak or as it began to subside. This image shows the waxing Moon, low to the western horizon, with colorful patches of glowing sky nearby. Photo by James Guilford.

While I was at the lake I heard others coming and going from the park, pretty much the entire time I was there. A young couple eventually ventured away from the parking lot and encountered me at my spot around 11:30, seeking what I had found — a dark spot near the water. Their arrival had been delayed by a camera gone bad, and they had gone home to pick up another. Things petered out not long after the peak and, checking NOAA resources, it looked like the auroral ring was retreating back north. The couple had missed the best of the night and I, with frozen fingers and toes, I headed home.

NOAA Space Weather Prediction Center graphic showing the predicted extent of the October 10-11, 2024 aurora borealis. Observers reported seeing portions of the aurora as far south as the Florida Panhandle. According to SpaceWeather.com it was seen as far south as Puerto Rico!

Planetary camera first light

Still working without a dome, our setups are outdoors and temporary so we try and keep them fairly simple. Solar observing and imaging generally lend themselves well to brief observations due to the extreme amount of light available and resultant short photographic exposures. With a couple of clear days and nights available, we took advantage and made some experiments and observations with several successive setups on a single Skywatcher EQ6-R Pro mount.

Southern hemisphere of Sun — First Light image from ZWO ASI678MM planetary camera, via Baader Herschel-Prism, and Askar 103 APO telescope. False color applied.

We began with the Askar 103 APO telescope and its 700mm focal length, attaching our Baader Herschel-Prism, and the new ASI678MM monochrome camera. The setup worked well but for one issue: focus was only just achieved with the focuser racked all the way in with no latitude for adjustment. Image quality was very good but probably would have been better if we’d have had a bit more inward travel. Note: It was only later that we realized we might gain the needed travel if we had switched the camera’s nosepiece from the 1.25-inch to the 2-inch, allowing removal of the thick 1.25-inch adapter ring from the Herschel. A well, duh, moment!

By the way, we continue to be impressed by the build quality and optical excellence of the Askar refractor. It’s a solid instrument with great features, delivering superb results.

Askar 103 APO telescope, Baader Herschel-Prism, ASI678MM camera, on the Skywatcher mount makes an excellent combination. A Herschel wedge-style optical device does not require a filter be attached in front of the telescope’s objective lens — deflecting, absorbing, and ejecting the bulk of sunlight energy. Internal filters in the Baader apparatus reduce brightness and increase contrast.
The Meade 6-inch refractor atop the Skywatcher mount and tripod. Visually, very effective, but the setup did not work with the Herschel-Prism and camera. The circular paved area is to form the floor of the observatory structure, the gray conduit to deliver power to a permanent mounting pier. Yes, the sky really was that blue that day!

The second experiment involved installing our massive Meade 6-inch telescope on the mount. The Skywatcher has a retractable rod for holding counterweights and is, therefore, a bit shorter than it might otherwise be, resulting in less leverage. It took nearly all of our available counterweights to balance the big scope. We installed the Herschel-Prism and a nice eyepiece and got beautiful views of the spotted face of our star. Attaching the ASI678MM, however, we could not reach focus — that inward focuser travel limit again — but we don’t believe the switch to the 2-inch nosepiece will help. That’s a shame! The Meade’s 1,250mm focal length would have provided amazing closeups!

The 11-inch Celestron SCT set up for a nighttime trial. This OTA was part of an integrated mount system that had failed so we “deforked” the telescope and attached a mounting rail for use on an equatorial mount.

With the mount set up we decided to try out the 11-inch Celestron SCT at night. Herschel wedge accessories are not to be used on reflecting telescopes as the concentrated unfiltered incoming sunlight can damage the scope’s secondary mirror. To our disappointment the telescope, which has set in storage for months since we attempted collumnation, displayed rather severe image distortions — comma-shaped stars. After a good bit of frustration we dismounted the telescope and planned to come out the next night with the Vixen Cassegrain telescope.

All good things… A series of clear days and nights came to an end with clouds rolling in to cover Saturn as it emerged from behind neighboring trees.

The following evening looked very promising; the sky was actually more transparent than it had been for the Celestron effort. Saturn would rise from behind trees neighboring our site some time after 11 p.m. so, at the appointed hour, we stepped outdoors and looked. Clouds, heralding a day or two of rain showers, were rolling in — broken at first but rapidly obscuring the entire sky. We tore down the setup, stowed the gear, and called it a night.

Tight crop on sunspots from the planetary camera’s First Light image of September 4. Sunspot umbra, penumbra, details are visible as are faculae and the granulated texture of the solar photosphere. Askar telescope, Baader Herschel-Prism, ZWO ASI678MM camera.

Over the period of a couple of days and nights, much was learned and the new planetary camera proved itself to be an excellent performer. We’ll continue to use the camera and telescope for solar and, probably, lunar views. Next we’ll likely try installing the focal reducer to achieve full-disk images.

Saturn and Moon in Conjunction

Moon and Saturn had a close encounter tonight, August 20, 2024. Okay, the two orbs were about 809 million miles apart but they were close in the sky. I shot this image as early as I could, shooting through a narrow gap in the trees, with a telephoto lens and not a big ole telescope (which I’d have preferred). Still, there they were, together in our night sky, and here they are, a glowing pockmarked moon, and a distant and giant ringed world in one picture. Where is Saturn? It’s that tiny amber dot — a few pixels in size — above the lunar disk. Saturn’s ring plane is seen nearly on-edge now making the planet visually even smaller.
— Photo by James Guilford